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Abstract. For a system of two spin-1
2 particles and for given four observables, two for each

and non-commuting, there exists a unique state which admits Hardy’s non-locality. Hence, no
mixture state admits Hardy’s non-locality.

Recently Hardy [1] has discovered that contradiction between local realism and quantum
mechanics can be shown for a system of two spin-1

2 particles without using (Bell)
inequalities. It has also been shown that this contradiction exists for almost all entangled
states (maximally entangled states are exceptions) [2, 3]. Thomas F Jordan [4] has proved the
converse of Hardy’s result. He has shown that for any choice of two different measurement
possibilities for each particle, a state can be found which gives Hardy-type contradiction.
An easier proof has been provided by Mermin [5]. Jordan [6] has also shown that for a
particular entangled state there are so many choices of observables which satisfy Hardy’s
non-locality condition.

Very recently Adan Cabelloet al [6] proved the Bell–Kochen–Specker (BKS) theorem
in four dimensions using 18 vectors only. There they gave a probabilistic proof of BKS
theorem using only factorizable propositions, which can be interpreted in terms of local
measurements and hence can be related to Hardy’s non-locality theorem.

Using their technique we shall try to show that for two spin-1
2 particles and four

spin-1
2 observables, two for each and non-commuting, there exists a unique state which

satisfy Hardy’s non-locality. So in the four-dimensional Hilbert space there cannot be any
mixture which will show Hardy’s non-locality. To prove this we shall use the following
two premises,

(1) For a Hilbert space of dimensionn, for given n orthogonal directions{ri}, one of
them is labelled 1,v(rj ) = 1 and the remaining ones 0,v(rk) = 0, k 6= j .

(2) If for a subspace of dimensionk(k < n), there arek number of linearly independent
vectors for all of whichv(ri ) = 0, for ri = 1, 2 . . . k, then for any vectorr in that subspace
v(r) = 0.

The first one is generally used for proving the BKS theorem. The simple reason that
the second one holds, is the subspace of this kind is orthogonal to the state vector. So for
any vectorr in this subspace,v(r) = 0.

We consider four propositionsF andD for particle 1, andG andE for particle 2, where

F = projection on vector(1, 0)

D = projection on vector(d1, d2)

0305-4470/97/080217+03$19.50c© 1997 IOP Publishing Ltd L217



L218 Letter to the Editor

G = projection on vector(g1, g2)

E = projection on vector(e1, e2). (1)

We want to find out the state which satisfies the following equations

〈FG〉 = 0

〈D(1−G)〉 = 0

〈(1− F)E〉 = 0

〈DE〉 > 0. (2)

The above equations of (2) can be translated into answers to the projectors over the following
four-dimensional vectors

v(g1, g2, 0, 0) = 0 (3)

v(d1g2,−d1g1, d2g2,−d2g1) = 0 (4)

v(0, 0, e1, e2) = 0. (5)

There is a non-zero probability for

v(d1e1, d1e2, d2e1,−d2e2) = 1. (6)

It is to be noted that four vectors in (3)–(6) are linearly independent. So they generate
the four-dimensional Hilbert space associated with the system. Again the vector in (3) is
orthogonal to the vectors (4) and (5). Now we consider another vectork (say) which is
orthogonal to the vector in (4) and lie in the plane generated by vectors in (4) and (5).
According to the second premise the value assigned to this new vector must be zero, i.e.

v(k) = 0. (7)

Let m be the vector which is orthogonal to the subspace generated by the vectors in (3),
(4) andk. Then from the second condition we get

v(m) = 1. (8)

This vectorm represents the state which is unique. The fourth condition is satisfied because
vector in (6) is not in the subspace generated by vectors in (3), (4) andk. This completes
the proof.

The vectorm can be easily found from the orthogonality ofm to the vectors in (3),
(4) and (5). If we write

m = (e, f, g, h) (9)

then

e = d2g2(e1g1+ e2g2)

f = −d2g1(e1g1+ e2g2)

g = −e2d1(g
2
1 + g2

2)

h = e1d1(g
2
1 + g2

2). (10)

It can be easily shown that the vectorm cannot represent vectors for product state or
maximally entangled state.

The scalar product betweenm and vector in (6) is

S = d1d2(e1g1+ e2g2)(e1g2− e2g1). (11)

None of the factors in the above expression can be zero, because then projectors for the
same particle would commute.
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It is a well known result that there are mixture states for two spin-1
2 particle system

which violate the Bell-CHSH inequality [7]. But our result shows that unlike in the case of
Bell-CHSH inequalities, no mixture state for two spin-1

2 particles admit non-locality without
inequalities.
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